DESCRIPTION

New product

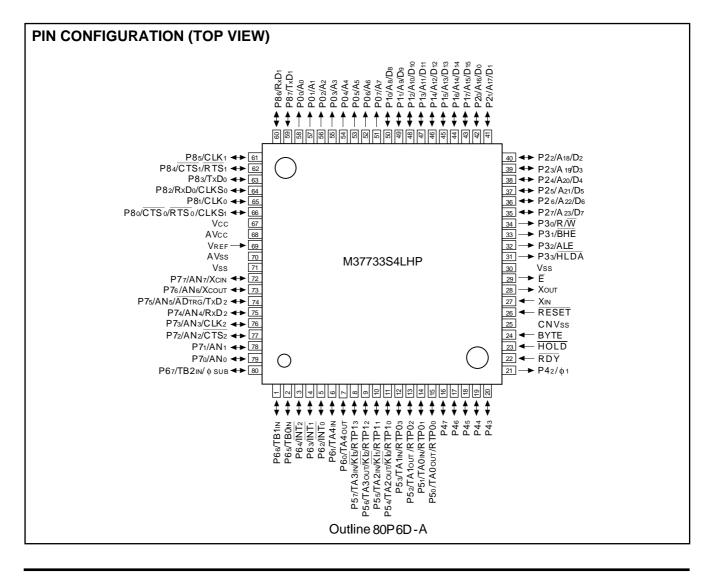
The M37733S4LHP is a microcomputer using the 7700 Family core. This microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the RAM, multiple-function timers, serial I/O, A-D converter, and so on.

Its strong points are the low power dissipation, the low supply voltage and the small package.

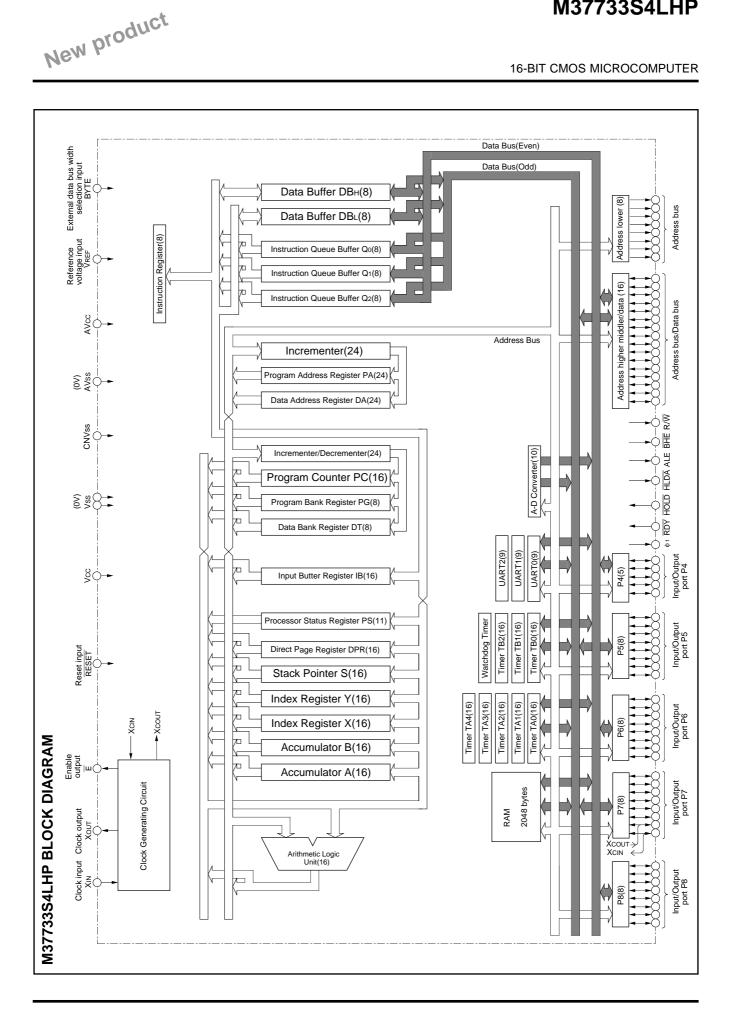
FEATURES

 Number of basic 	instructions	103
 Memory size 	RAM	2048 bytes
Instruction execution	ition time	
The fastest instru	uction at 12 MHz frequency	333 ns
•Single power sup	oply	2.7–5.5 V
Low power dissip	pation (At 3 V supply voltage,	12 MHz frequency)
		10.8 mW (Typ.)
Interrupts		19 types, 7 levels
 Multiple-function 	16-bit timer	5+3

MITSUBISHI MICROCOMPUTERS


16-BIT CMOS MICROCOMPUTER

Serial I/O (UART or clock synd	chronous)3
●10-bit A-D converter	8-channel inputs
12-bit watchdog timer	
Programmable input/output	
(ports P4, P5, P6, P7, P8)	
Clock generating circuit	2 circuits built-in
Small nackade	30-pin plastic molded fine-pitch QFP
	bo pin plastic molucu inic pitch di i


APPLICATION

Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and so on.

Control devices for general industrial equipment such as communication equipment, and so on.

FUNCTIONS OF M37733S4LHP

	Parameter	Functions		
Number of basic instructions		103		
Instruction execution time		333 ns (the fastest instruction at external clock 12 MHz frequency)		
Memory size	RAM	2048 bytes		
Input/Output ports	P5 – P8	8-bit X 4		
input output poins	P4	5-bit X 1		
Multi-function timers	TA0, TA1, TA2, TA3, TA4	16-bit X 5		
Multi-function timers	TB0, TB1, TB2	16-bit X 3		
Serial I/O		(UART or clock synchronous serial I/O) X 3		
A-D converter		10-bit X 1 (8 channels)		
Watchdog timer		12-bit X 1		
Interrupte		3 external types, 16 internal types		
Interrupts		Each interrupt can be set to the priority level $(0 - 7.)$		
Clock generating circuit		2 circuits built-in (externally connected to a ceramic resonator or a		
		quartz-crystal oscillator)		
Supply voltage		2.7 – 5.5 V		
Power dissipation		10.8 mW (at 3 V supply voltage, external clock 12 MHz frequency)		
		27 mW (at 5 V supply voltage, external clock 12 MHz frequency)		
Input/Output characteristic	Input/Output voltage	5 V		
	Output current	5 mA		
Memory expansion		Maximum 16 Mbytes		
Operating temperature range		–40 to 85 °C		
Device structure		CMOS high-performance silicon gate process		
Package		80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch)		

New product

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
Vcc,	Power source		Apply 2.7 – 5.5 V to Vcc and 0 V to Vss.
Vss			
CNVss	CNVss input	Input	Connect to Vcc.
RESET	Reset input	Input	When "L" level is applied to this pin, the microcomputer enters the reset state.
Xin	Clock input	Input	These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartz crystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be
Хоит	Clock output	Output	connected to the XIN pin, and the XOUT pin should be left open.
Ē	Enable output	Output	When output level of \overline{E} signal is "L", data/instruction read or data write is performed.
BYTE	Bus width selection input	Input	This pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when "L" signal is input and an 8-bit width when "H" signal is input.
AVcc,	Analog power		Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss.
AVss	source input		
Vref	Reference voltage input	Input	This is reference voltage input pin for the A-D converter.
P00/A0-	Address (low-	Output	Address (Ao – A7) is output.
P07/A7	order) output		
P10/A8/D8 – P17/A15/D15	Address (middle -order) output/data (high-order) I/O	I/O	When the BYTE pin is set to "L" and external data bus has a 16-bit width, high-order data $(D_8 - D_{15})$ is input/output or an address $(A_8 - A_{15})$ is output. When the BYTE pin is "H" and an external data bus has an 8-bit width, only address $(A_8 - A_{15})$ is output.
P20/A16/D0 – P27/A23/D7	Address (high- order) output/data (low-order) I/O	I/O	Low-order data (D0 – D7) is input/output or an address (A16 – A23) is output.
P30/R/W	Read/Write output	Output	"H" indicates the read status and "L" indicates the write status.
P31/BHE	Byte high enable output	Output	"L" is output when an odd-numbered address is accessed.
P32/ALE	Address latch enable output	Output	This is used to retrieve only the address from address and data multiplex signal.
P33/HLDA	Hold acknow- ledge output	Output	This outputs "L" level when the microcomputer enters hold state after a hold request is accepted.
HOLD	Hold request	Input	This is an input pin for HOLD request signal. The microcomputer enters into hold state while this signal is "L".
RDY	Ready input	Input	This is an input pin for RDY signal. The microcomputer enters into ready state while this signal is "L".
P42/ \$1	Clock output	Output	This pin outputs the clock
P43 – P47	I/O port P4	I/O	These pins become a 5-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset.
P50 – P57	I/O port P5	I/O	In addition to having the same functions as port P4, these pins also function as I/O pins for timers A0 to A3 and input pins for key input interrupt input $(\overline{KI_1} - \overline{KI_3})$.
P60 – P67	I/O port P6	I/O	In addition to having the same functions as port P4, these pins also function as I/O pins for timer A4, input pins for external interrupt input ($\overline{INT_0} - \overline{INT_2}$) and input pins for timers B0 to B2. P67 also functions as sub-clock ϕ sub output pin.
P70 – P77	I/O port P7	I/O	In addition to having the same functions as port P4, these pins function as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both.
P80 – P87	I/O port P8	I/O	In addition to having the same functions as port P4, these pins also function as I/O pins for UART 0 and UART 1.

New product

BASIC FUNCTION BLOCKS The M37733S4LHP has the same functions as the M37733MHBXXXFP except for the following :

- (1) The memory map is different.
- (2) The processor mode is different.
- (3) The reset circuit is different.
- (4) Pulse output port mode of timer A is available.
- (5) The function of ROM area modification is not available.

MEMORY

The memory map is shown in Figure 1. The address space has a capacity of 16 Mbytes and is allocated to addresses from 0_{16} to FFFFF16. The address space is divided by 64-Kbyte unit called bank. The banks are numbered from 0_{16} to FF16.

Built-in RAM and control registers for internal peripheral devices are assigned to bank 016.

Addresses FFD616 to FFFF16 are the RESET and interrupt vector addresses and contain the interrupt vectors. Use ROM for memory of this address.

The 2048-byte area allocated to addresses from 8016 to 87F16 is the built-in RAM. In addition to storing data, the RAM is used as stack during a subroutine call or interrupts.

Peripheral devices such as I/O ports, A-D converter, serial I/O, timer, and interrupt control registers are allocated to addresses from 016 to 7F16.

A 256-byte direct page area can be allocated anywhere in bank 016 by using the direct page register (DPR). In the direct page addressing mode, the memory in the direct page area can be accessed with two words. Hence program steps can be reduced.

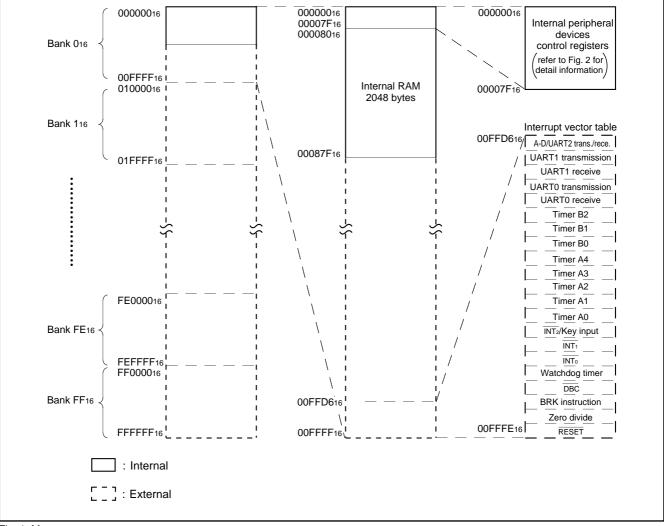


Fig. 1 Memory map

MITSUBISHI MICROCOMPUTERS

16-BIT CMOS MICROCOMPUTER

000000	adecimal notation)
000001	
000002	Port P0 register
000003	Port P1 register
000004	Port P0 direction register
000005	Port P1 direction register
000006 000007	Port P2 register
000007	Port P3 register Port P2 direction register
000009	Port P3 direction register
00000A	Port P4 register
00000B	Port P5 register
00000C	Port P4 direction register
00000D	Port P5 direction register
00000E	Port P6 register
00000F	Port P7 register
000010	Port P6 direction register
000011	Port P7 direction register
000012 000013	Port P8 register
000013	Port P8 direction register
000015	
000016	
000017	
000018	
000019	
00001A	
00001B	
00001C	Pulse output data register 1
00001D 00001E	Pulse output data register 0 A-D control register 0
00001E	A-D control register 1
000020	
000021	A-D register 0
000022	A D register 1
000023	A-D register 1
000024	A-D register 2
000025	
000026	A-D register 3
000027	
000028 000029	A-D register 4
000023 00002A	
00002B	A-D register 5
00002C	
00002D	A-D register 6
00002E	A-D register 7
00002F	
000030	UART 0 transmit/receive mode register
000031	UART 0 baud rate register (BRG0)
000032 000033	UART 0 transmission buffer register
000033	UART 0 transmit/receive control register 0
000035	UART 0 transmit/receive control register 0
000036	
000037	UART 0 receive buffer register
000038	UART 1 transmit/receive mode register
000039	UART 1 baud rate register (BRG1)
00003A	UART 1 transmission buffer register
00003B	
00003C	UART 1 transmit/receive control register 0
00003D 00003E	UART 1 transmit/receive control register 1
00003E 00003F	UART 1 receive buffer register
000001	L

New product

ddress (Hex	adecimal notation)
000040	Count start flag
000041	
000042 000043	One-shot start flag
000043	Up-down flag
000045	
000046	Timer A0 register
000047 000048	Timer A1 register
000049 00004A	
00004B	Timer A2 register
00004C 00004D	Timer A3 register
00004E 00004F	Timer A4 register
00004P	Timer B0 register
000051 000052	
000053	Timer B1 register
000054 000055	Timer B2 register
000056	Timer A0 mode register
000057	Timer A1 mode register
000058	Timer A2 mode register
000059	Timer A3 mode register
00005A	Timer A4 mode register
00005B	Timer B0 mode register
00005C	Timer B1 mode register
00005D	Timer B2 mode register
00005E	Processor mode register 0
00005F	Processor mode register 1
000060	Watchdog timer register
000061	Watchdog timer frequency selection flag
000062	Waveform output mode register
000063	Reserved area (Note)
000064	UART2 transmit/receive mode register
000065	UART2 baud rate register (BRG2)
000066 000067	UART2 transmission buffer register
000068	UART2 transmit/receive control register 0
000069	UART2 transmit/receive control register 1
00006A 00006B	UART2 receive buffer register
00006C	Oscillation circuit control register 0
00006D	Port function control register
00006E	Serial transmit control register
00006F	Oscillation circuit control register 1
000070	A-D/UART2 trans./rece. interrupt control register
000070	UART 0 transmission interrupt control register
	UART 0 receive interrupt control register
000072	UART 1 transmission interrupt control register
000073	·
000074	UART 1 receive interrupt control register
000075	Timer A0 interrupt control register
000076	Timer A1 interrupt control register
000077	Timer A2 interrupt control register
000078	Timer A3 interrupt control register
000079	Timer A4 interrupt control register
00007A	Timer B0 interrupt control register
00007B	Timer B1 interrupt control register
00007C	Timer B2 interrupt control register
00007C	INT ₀ interrupt control register
00007E	INT1 interrupt control register
0000/E	
00007F	INT ₂ /Key input interrupt control register

Note . Do not write to this address.

Fig. 2 Location of internal peripheral devices and interrupt control registers

16-BIT CMOS MICROCOMPUTER

Pulse output port mode

New product

The pulse motor drive waveform can be output by using plural internal timer A.

Figure 3 shows a block diagram for pulse output port mode. In the pulse output port mode, two pairs of four-bit pulse output ports are used. Whether using pulse output port or not can be selected by waveform output selection bit (bit 0, bit 1) of waveform output mode register (6216 address) shown in Figure 4. When bit 0 of waveform output selection bit is set to "1", RTP10, RTP11, RTP12, and RTP13 are used as pulse output ports, and when bit 1 of waveform output selection bit is set to "1", RTP00, RTP01, RTP02, and RTP03 are used as pulse output ports. When bits 1 and 0 of waveform output selection bit are set to "1", RTP10, RTP11, RTP12, and RTP13, and RTP00, RTP01, RTP02, and RTP03 are used as pulse output ports. The ports not used as pulse output ports can be used as normal parallel ports, timer input/output or key input interrupt input.

In the pulse output port mode, set timers A0 and A2 to timer mode as timers A0 and A2 are used. Figure 5 shows the bit configuration of timer A0, A2 mode registers in pulse output port mode.

Data can be set in each bit of the pulse output data register corresponding to four ports selected as pulse output ports. Figure 6

shows the bit configuration of the pulse output data register. The contents of the pulse output data register 1 (low-order four bits of 1C16 address) corresponding to RTP10, RTP11, RTP12, and RTP13 is output to the ports each time the counter of timer A2 becomes 000016. The contents of the pulse output data register 0 (low-order four bits of 1D16 address) corresponding to RTP00, RTP01, RTP02, and RTP03 is output to the ports each time the counter of timer A0 becomes 000016.

Figure 7 shows example of waveforms in pulse output port mode.

When "0" is written to a specified bit of the pulse output data register, "L" level is output to the corresponding pulse output port when the counter of corresponding timer becomes 000016, and when "1" is written, "H" level is output to the pulse output port.

Pulse width modulation can be applied to each pulse output port. Since pulse width modulation involves the use of timers A1 and A3, activate these timers in pulse width modulation mode.

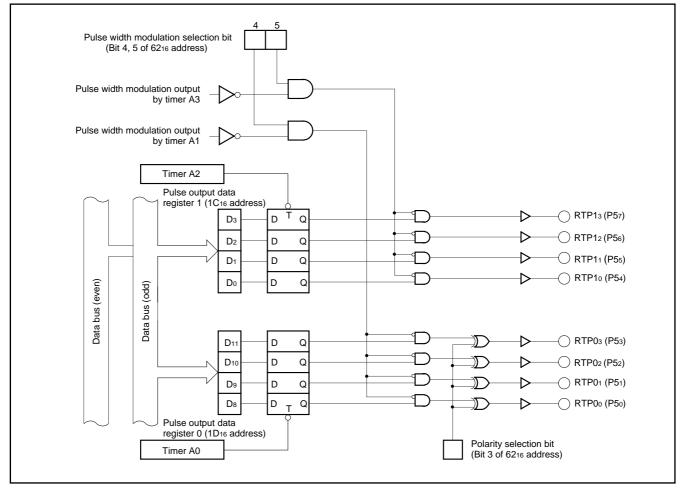


Fig. 3 Block diagram for pulse output port mode

RTP10, RTP11, RTP12, and RTP13 are applied pulse width modulation by timer A3 by setting the pulse width modulation selection bit by timer A3 (bit 5) of the waveform output mode register to "1".

New product

RTP00, RTP01, RTP02, and RTP03 are applied pulse width modulation by timer A1 by setting the pulse width modulation selection bit by timer A1 (bit 4) of the waveform output mode register to "1".

The contents of the pulse output data register 0 can be reversed and output to pulse output ports RTP00, RTP01, RTP02, and RTP03 by the polarity selection bit (bit 3) of the waveform output mode register. When the polarity selection bit is "0", the contents of the pulse output data register 0 is output unchangeably, and when "1", the contents of the pulse output data register 0 is reversed and output. When pulse width modulation is applied, likewise the polarity reverse to pulse width modulation can be selected by the polarity selection bit.

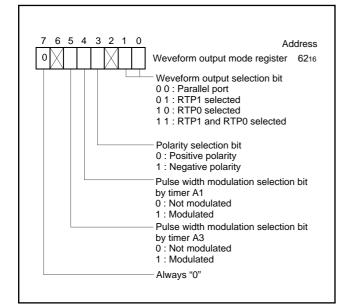


Fig. 4 Waveform output mode register bit configuration

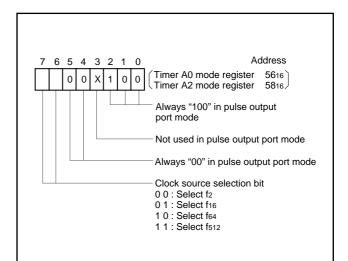


Fig. 5 Timer A0, A2 mode register bit configuration in pulse output port mode

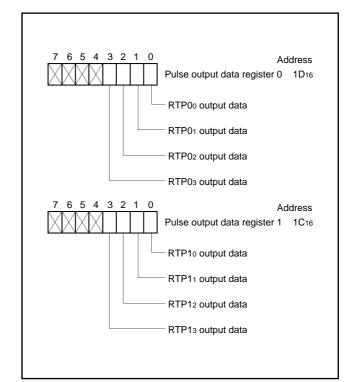


Fig. 6 Pulse output data register bit configuration

MITSUBISHI MICROCOMPUTERS

M37733S4LHP

16-BIT CMOS MICROCOMPUTER

Output signal at each time	Example of pulse output	port (R1P10 – R	(1P13)				
Output signal at each time when timer A2 becomes 000016							
RTP13 (P57)							
	г						
RTP12 (P56)							
RTP11 (P55)							
RTP10 (P54)							
Output signal at each time	Example of pulse output	port (RTP10 – R	TP13) whe	n pulse wid	th modulati	on is applied by	timer A3.
when timer A2 becomes 000016							Γ
RTP13 (P57)							
RTP12 (P56)	ſ	1000	1000	חו			
RTP11 (P55)							
RTP10 (P54)							
	Example of pulse output by timer A1 with polarity	port (RTP00 – R	TP03) whe	n pulse wid	th modulati	on is applied	
Output signal at each time when timer A0 becomes 000016		П	П	П	П	Π	П
RTP03 (P53)							
RTP02 (P52)							
			—) []				
RTP01 (P51)							
RTP00 (P50)							

New product

16-BIT CMOS MICROCOMPUTER

PROCESSOR MODE

New product

The bits 0 of processor mode register 0 as shown in Figure 8 is used to select which mode of microprocessor mode, and evaluation chip mode.

Figure 9 shows functions of P00/A0 to P47 pins in each mode. The external memory area also changes when the mode changes.

Figure 10 shows the memory map for each mode.

The accessing of the external memory is affected by the BYTE pin, the bit 2 (wait bit) of processor mode register 0, and bit 0 (wait selection bit) of processor mode register 1.

• BYTE pin

When accessing the external memory, the level of the BYTE pin is used to determine whether to use the data bus as 8-bit width or 16-bit width.

The data bus width is 8 bits when the level of the BYTE pin is "H", and P20/A16/D0 to P27/A23/D7 pins become the data I/O pins.

The data bus width is 16 bits when the level of the BYTE pin is "L", and both P20/A16/D0 to P27/A23/D7 pins and P10/A8/D8 to P17/A15/ D15 pins become the data I/O pins.

When accessing the internal memory, the data bus width is always 16 bits regardless of the BYTE pin level.

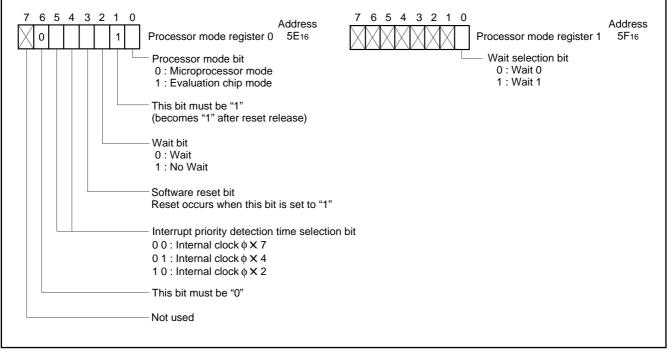


Fig. 8 Processor mode register bit configuration

MITSUBISHI MICROCOMPUTERS

M37733S4LHP

16-BIT CMOS MICROCOMPUTER

	PM1	1	1
	PM0	0	1
Pin	Mode	Microprocessor mode	Evaluation Chip mode
P0o/Ao -	• P07/A7	E P00/A0 I P07/A7 Address A0-A7	Same as left
	BYTE = "L"	E P10/A8/D8 I P17/A15/D15 Address X Data(odd) X	Same as left
P10/A8/D8 I P17/A15/D15	BYTE = "H"	E P10/A8/D8 I P17/A15/D15	E As to A15 P1o/As/Da I P17/A15/D15 Data(odd) Ports P4, P5 and their direction registers are treated as 16-bit wide bus.
P20/A16/D0	BYTE = "L"	E P20/A16/D0 I P27/A23/D7 Address Data(even)	Same as left
I P27/A23/D7	BYTE = "H"	E P2o/A16/Do P2r/A23/D7	E P20/A16/D0 I P27/A23/D7 Ports P4, P5 and their direction registers are treated as 16-bit wide bus.
P30/R/W, P31/BHE, P32/ALE, P33/HLDA		E P30/R/W P31/BHE P32/ALE P32/ALE P33/HLDA HLDA	Same as left
HOLD, RDY, P42/ ϕ 1, Port P43 to	P47	E HOLD <u>HOLD</u> RDY <u>RDY</u> P4 ₂ / \oplus 1 P4 ₃ P4 ₇ <u>I/O Port</u>	Ē HOLD RDY P42/\$\$1 P43 P44 P44 P44 P45 VDA VDA P46 VPA P47 DBC

Fig. 9 Relationship between pins P00 /A0 to P47 and processor modes

New product

Note. The signal output disable selection bit (bit 6 of the oscillation circuit control register 0) can stop the ϕ 1 output in the microprocessor mode. In the microprocessor mode, signal \overline{E} can also be fixed to "H" when the internal memory area is accessed.

Wait bit

New product

As shown in Figure 11, when the external memory area is accessed with the processor mode register 0 (address $5E_{16}$) bit 2 (wait bit) cleared to "0", the access time can be extended compared with no wait (the wait bit is "1").

The access time is extended in two ways and this is selected with bit 0 (wait selection bit) of processor mode register 1 (address 5F16).

When this bit is "1", the access time is 1.5 times compared to that for no wait. When this bit is "0", the access time is twice compared to that for no wait.

At reset, the wait bit and the wait selection bit are "0".

The accessing of internal memory area is performed in no wait mode regardless of the wait bit.

The processor modes are described below.

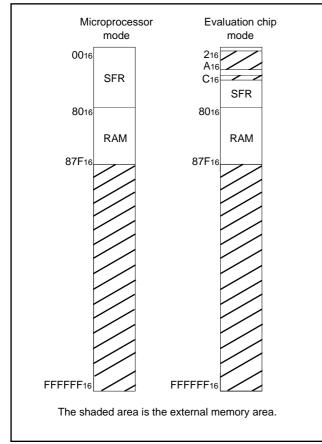


Fig. 10 External memory area for each processor mode

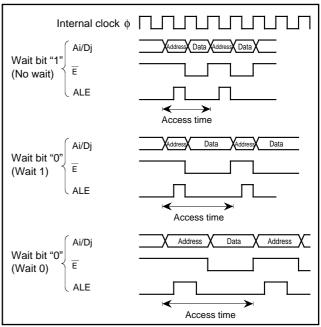


Fig. 11 Relationship between wait bit, wait selection bit, and access time

(1) Microprocessor mode [10]

Microprocessor mode is entered by connecting the CNVss pin to Vcc and starting from reset.

Signal \overline{E} is output from pin \overline{E} and is "L" during the data/instruction code read or data write term. When the internal memory area is read or written, \overline{E} can be fixed to "H" by setting the signal output disable selection bit (bit 6 of oscillation circuit control register 0) to "1". P00/A0 to P07/A7 pins become address output pins.

P10/A8/D8 to P17/A15/D15 pins have two functions depending on the level of the BYTE pin.

When the BYTE pin level is "L", P10/Aa/Da to P17/A15/D15 pins function as an address output pin while \overline{E} is "H" and as an odd address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

When the BYTE pin level is "H", P1 $_0/A_8/D_8$ to P1 $_7/A_{15}/D_{15}$ pins function as an address output pin.

When the BYTE pin level is "L", P2o/A16/D0 to P27/A23/D7 pins function as an address output pin while \overline{E} is "H" and as an even address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

 R/\overline{W} is a read /write signal which indicates a read when it is "H" and a write when it is "L".

BHE is a byte high enable signal which indicates that an odd address is accessed when it is "L".

Therefore, two bytes at even and odd addresses are accessed simultaneously if address A₀ is "L" and $\overline{\text{BHE}}$ is "L".

ALE is an address latch enable signal used to latch the address signal from a multiplexed signal of address and data. The latch is transparent while ALE is "H" to let the address signal pass through and held while ALE is "L".

New product

HLDA is a hold acknowledge signal and is used to notify externally when the microcomputer receives HOLD input and enters hold state. HOLD is a hold request signal. It is an input signal used to put the microcomputer in hold state. HOLD input is accepted when the internal clock ϕ falls from "H" level to "L" level while the bus is not used. P00/A0 to P07/A7 pins, P10/A8/D8 to P17/A15/D15 pins, P20/A16/D0 to P27/A23/D7 pins, P30/R/W pin, and P31/BHE pin are floating while the microcomputer stays in hold state. These pins are floating after one cycle of the internal clock ϕ later than HLDA signal changes to "L" level. At the removing of hold state, these ports are removed from floating state after one cycle of internal clock ϕ later than HLDA signal changes to "H" level.

 $\overline{\text{RDY}}$ is a ready signal. If this signal goes "L", the internal clock ϕ stops at "L". $\overline{\text{RDY}}$ is used when slow external memory is attached. P42/ ϕ 1 pin is an output pin for clock ϕ 1. The ϕ 1 output is independent of $\overline{\text{RDY}}$ and does not stop even when internal clock ϕ

stops because of "L" input to the $\overline{\text{RDY}}$ pin. As shown in Table 2, ϕ 1 output can also be stopped with the signal output disable selection bit "1". In this case, write "1" to the port P42 direction register.

(2) Evaluation chip mode [11]

Evaluation chip mode is entered by applying voltage twice the Vcc voltage to the CNVss pin. This mode is normally used for evaluation tools.

The functions of $\overline{E},$ P00/A0 to P07/A7 pins, R/W, $\overline{BHE},$ ALE, and \overline{HLDA} are the same as those in microprocessor mode.

P1o/As/Da to P17/A15/D15 pins function as address output pins while \overline{E} is "H" and as data I/O pin \overline{of} odd addresses while E is "L" regardless of the BYTE pin level. However, if an internal memory is read, external data is ignored while \overline{E} is "L". P2o/A16/D0 to P27/A23/D7 pins function as address output pins while \overline{E} is "H" and as data I/O pin of even addresses while \overline{E} is "L" when the BYTE pin level is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L" when the BYTE pin level is "L".

When the BYTE pin level is "H" or 2•Vcc, port P2 functions as an address output pin while \overline{E} is "H" and as data I/O pin of even and odd addresses while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

Port P4 and its data direction which are located at address 0A16 and 0C16 are treated differently in evaluation chip mode. When these

16-BIT CMOS MICROCOMPUTER

addresses are accessed, the data bus width is treated as 16 bits regardless of the BYTE pin level, and the access cycle is treated as internal memory regardless of the wait bit.

The functions of \overline{HOLD} and \overline{RDY} are the same as those in microprocessor mode. Clock ϕ 1 from P42/ ϕ 1 pin is always output regardless of signal output disable selection bit.

Ports P4₃ to P4₆ become MX, QCL, VDA, and VPA output pins respectively. Port P4₇ becomes the DBC input pin.

The MX signal normally contents of flag m, but the contents of flag x is output if the CPU is using flag x.

QCL is the queue buffer clear signal. It becomes "H" when the instruction queue buffer is cleared, for example, when a jump instruction is executed.

VDA is the valid data address signal. It becomes "H" while the CPU is reading data from data buffer or writing data to data buffer. It also becomes "H" when the first byte of the instruction (operation code) is read from the instruction queue buffer.

VPA is the valid program address signal. It becomes "H" while the CPU is reading an instruction code from the instruction queue buffer. DBC is the debug control signal and is used for debugging. Table 1 shows the relationship between the CNVss pin input levels and processor modes.

Table 1. Relationship between CNVss pin input levels and processor modes

mouce		
CNVss	Mode	Description
Vss		Microprocessor mode upon starting after reset.
2 • Vcc	 Evaluation chip 	Evaluation chip mode only.

Table 2. Function of signal output disable selection bit CM₆ (bit 6 of oscillation circuit control register 0)

Processor mode	Pin	Function		
1 TOCESSOF MODE	1 111	CM6 = "0"	CM6 = "1"	
Microprocessor mode	Ē	E is output when the internal/external memory area is accessed. After WIT/STP instruction is executed, "H" is output.	 E is output only when the external memory area is accessed. "L" is output after WIT/STP instruction is executed. * Standby state selection bit (bit 0 of port function control register) must be set to "1". 	
	φ 1	Clock φ 1 is output.	"H"or "L" is output. (Output the content of P42 latch.) * Port P42 direction register must be set to "1".	

Note. Functions shown in Table 2 cannot be emulated in a debugger.

16-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

New product

The microcomputer is released from the reset state when the RESET pin is returned to "H" level after holding it at "L" level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A₂₃ – A₁₆ to 0016, A₁₅ – A₈ to the contents of address FFFF16, and A₇ – A₀ to the contents of address FFFE16. Figure 12 shows the status of the internal registers during reset. Figure 13 shows an example of a reset circuit. If the stabilized clock

is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. If a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from "L" to "H" after the main-clock oscillation is fully stabilized.

	Address		Address
Port P0 direction register	(0416) 0016	Watchdog timer frequency selection flag	(6116)
Port P1 direction register	(0516)••• 0016	Waveform output mode register	(6216) 0 0 0 0 0 0 0
Port P2 direction register	(0816) 0016	UART2 transmit/receive mode register	(6416)
Port P3 direction register	(0916)	UART2 transmit/receive control register 0	(6816)
Port P4 direction register	(0C16)••• 0016	UART2 transmit/receive control register 1	(6916)••• 0 0 0 0 0 0 1 0
Port P5 direction register	(0D16)••• 0016	Oscillation circuit control register 0	(6C16)••• 0 0 0 0 0 1
Port P6 direction register	(1016) 0016	Port function control register	(6D16)••• 0016
Port P7 direction register	(1116)••• 0016	Serial transmit control register	(6E16)••• 0 0
Port P8 direction register	(1416) 0016	Oscillation circuit control register 1	(6F16)
A-D control register 0	(1E ₁₆)•••• 0 0 0 0 0 0 ? ? ?	A-D/UART2 trans./rece. interrupt control register	(7016)
A-D control register 1	(1F16)••• 0 0 0 1 1	UART 0 transmission interrupt control register	r (7116)••• 0 0 0 0
UART 0 transmit/receive mode register	(3016) 0016	UART 0 receive interruupt control register	(7216)
UART 1 transmit/receive mode register	(3816)••• 0016	UART 1 transmission interrupt control register	r (7316)••• 0 0 0 0
UART 0 transmit/receive control register 0	(3416)••• 0 0 0 0 1 0 0 0	UART 1 receive interruupt control register	(7416)
UART 1 transmit/receive control register 0	(3C16)••• 0 0 0 0 1 0 0 0	Timer A0 interrupt control register	(7516)
UART 0 transmit/receive control register 1	(3516) 0 0 0 0 0 0 1 0	Timer A1 interrupt control register	(7616)
UART 1 transmit/receive control register 1	(3D16)••• 0 0 0 0 0 0 1 0	Timer A2 interrupt control register	(7716)
Count start flag	(4016)••• 0016	Timer A3 interrupt control register	(7816)
One- shot start flag	(4216)	Timer A4 interrupt control register	(7916)
Up-down flag	(4416)••• 0016	Timer B0 interrupt control register	(7A16)•••
Timer A0 mode register	(5616) 0016	Timer B1 interrupt control register	(7B16)
Timer A1 mode register	(5716)••• 0016	Timer B2 interrupt control register	(7C16)
Timer A2 mode register	(5816)••• 0016	INTo interrupt control register	(7D16)
Timer A3 mode register	(5916)••• 0016	INT1 interrupt control register	(7E16)
Timer A4 mode register	(5A16)••• 0016	INT2/Key input interrupt control register	(7F16)
Timer B0 mode register	(5B16)••• 0 0 1 0 0 0 0 0	Processor status register (PS)	000??0001??
Timer B1 mode register	(5C16)••• 0 0 1 0 0 0 0	Program bank register (PG)	0016
Timer B2 mode register	(5D16)••• 0 0 1 0 0 0 0	Program counter (РСн)	Content of FFFF16
Processor mode register 0	(5E16)••• 0016	Program counter (PCL)	Content of FFFE16
Processor mode register 1	(5F16)••• 0	Direct page register (DPR)	000016
Watchdog timer register	(6016)••• FFF16	Data bank register (DT)	0016

Fig. 12 Microcomputer internal status during reset

MITSUBISHI MICROCOMPUTERS

16-BIT CMOS MICROCOMPUTER

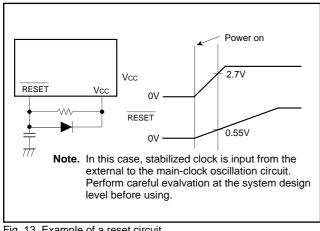


Fig. 13 Example of a reset circuit

New product

ADDRESSING MODES

The M37733S4LHP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE - CHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37733S4LHP has 103 machine instructions. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE - CHIP 16-BIT MICROCOMPUTERS for details.

New product

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to +7	V
AVcc	Analog power source voltage		-0.3 to +7	V
Vi	Input voltage RESET, CNVss, BYTE		-0.3 to +12	V
	Input voltage P10/A8/D8 - P17/A15/D15,			
	P20/A16/D0 - P27/A23/D7, P43 - P47,			
Vi	P50 – P57, P60 – P67, P70 – P77,		-0.3 to Vcc + 0.3	V
	P80 – P87, VREF, XIN, HOLD, RDY			
	Output voltage P00/A0 - P07/A7, P10/A8/D8 - P17/A15/D15,			
	P20/A16/D0 - P27/A23/D7, P30/R/W,			
Vo	P31/BHE, P32/ALE, P33/HLDA, P42/ op 1,		-0.3 to Vcc + 0.3	V
	P43 – P47, P50 – P57, P60 – P67,			
	P70 – P77, P80 – P87, XOUT, E			
Pd	Power dissipation	Ta = 25 °C	200	mW
Topr	Operating temperature		-40 to +85	°C
Tstg	Storage temperature		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 - 5.5 V, Ta = -40 to +85 °C, unless otherwise noted)

Symbol	Parameter	Limits			11.2
Symbol		Min.	Тур.	Max.	Unit
	f(XIN) : Operating	2.7		5.5	v
Vcc	Power source voltage f(XiN) : Stopped, f(XciN) = 32.768 kHz	2.7		5.5	V
AVcc	Analog power source voltage		Vcc		V
Vss	Power source voltage		0		V
AVss	Analog power source voltage		0		V
Viн	High-level input voltage HOLD, RDY, P43 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3)	0.8 Vcc		Vcc	v
Viн	High-level input voltage P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7	0.5 Vcc		Vcc	V
VIL	Low-level input voltage HOLD, RDY, P43 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3)	0		0.2Vcc	v
VIL	Low-level input voltage P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7	0		0.16Vcc	V
IOH(peak)	High-level peak output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7, P30/R/Ѿ, P31/BHE, P32/ALE, P33/HLDA, P42/ ∳ 1, P43 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87			-10	mA
IOH(avg)	High-level average output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE, P32/ALE, P33/HLDA, P42/ \$\overline{0}\$ 1, P43 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87			-5	mA
IOL(peak)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	mA
IOL(peak)	Low-level peak output current P44 – P47, P50 – P53			16	mA
IOL(avg)	Low-level average output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE, P32/ALE, P33/HLDA, P42/ \u03c6 1, P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87			5	mA
IOL(avg)	Low-level average output current P44 – P47, P50 – P53			12	mA
f(XIN)	Main-clock oscillation frequency (Note 4)			12	MHz
f(XCIN)	Sub-clock oscillation frequency		32.768	50	kHz

Notes 1. Average output current is the average value of a 100 ms interval.

2. The sum of IoL(peak) for ports P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE, P32/ALE, P33/ HLDA and P8 must be 80 mA or less, the sum of IOH(peak) for ports P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/ D7, P30/R/W, P31/BHE, P32/ALE, P33/HLDA and P8 must be 80 mA or less, the sum of IoL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less.

3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = "1".

4. The maximum value of $f(X_{IN}) = 6$ MHz when the main clock division selection bit = "1".

New product

Limits Symbol Parameter Test conditions Unit Min. Max. Тур. High-level output voltage P00/A0 - P07/A7, P10/A8/D8 - P17/A15/D15, 3 Vcc = 5 V, IOH = -10 mAP20/A16/D0 - P27/A23/D7, P33/HLDA, P42/ \$ 1. Vон V P43 - P47, P50 - P57, P60 - P67, P70 - P77, Vcc = 3 V, IOH = -1 mA 2.5 P80 - P87 High-level output voltage P00/A0 - P07/A7, P10/A8/D8 - P17/A15/D15. νон 4.7 Vcc = 5 V, IOH = $-400 \ \mu A$ V P20/A16/D0 - P27/A23/D7, P33/HLDA, P42/ 0 1 3.1 Vcc = 5 V, Iон = -10 mA Vон High-level output voltage P30/R/W, P31/BHE, P32/ALE 4.8 Vcc = 5 V, IOH = -400 μ A V 2.6 Vcc = 3 V, IoH = -1 mAVcc = 5 V, Iон = -10 mA 3.4 Vон High-level output voltage E Vcc = 5 V, IOH = $-400 \mu A$ 4.8 V 2.6 Vcc = 3 V, IoH = -1 mALow-level output voltage P00/A0 - P07/A7, P10/A8/D8 - P17/A15/D15, Vcc = 5 V, IoL = 10 mA2 Voi P20/A16/D0 - P27/A23/D7, P33/HLDA, P42/ o 1, V P43, P54 - P57, P60 - P67, P70 - P77, Vcc = 3 V, IoL = 1 mA0.5 P80 - P87 Vcc = 5 V, IoL = 16 mA1.8 V Vol Low-level output voltage P44 - P47, P50 - P53 Vcc = 3 V, IoL = 10 mA1.5 Low-level output voltage P00/A0 - P07/A7, P10/A8/D8 - P17/A15/D15, Vol Vcc = 5 V. IoL = 2 mA0.45 V P20/A16/D0 - P27/A23/D7, P33/HLDA, P42/ 0 1 Vcc = 5 V, IoL = 10 mA1.9 Low-level output voltage P30/R/W, P31/BHE, P32/ALE Voi V Vcc = 5 V, IoL = 2 mA0.43 Vcc = 3 V, IoL = 1 mA 0.4 Vcc = 5 V, IoL = 10 mA 1.6 Voi Low-level output voltage E Vcc = 5 V, IoL = 2 mA0.4 V Vcc = 3 V. lol = 1 mA0.4 Hysteresis HOLD, RDY, TA0IN - TA4IN, TB0IN - TB2IN, Vcc = 5 V1 0.4 INTo - INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, VT+ - VT-V Vcc = 3 V0.7 0.1 CLK1, CLK2, Klo - Kl3 Vcc = 5 V0.2 0.5 VT+-VT-Hysteresis RESET V Vcc = 3 V0.1 0.4 Vcc = 5 V0.1 0.4 $VT_{\pm} = VT_{\pm}$ Hysteresis XIN V Vcc = 3 V0.06 0.26 Vcc = 5 V0.1 0.4 VT+-VT-Hysteresis XCIN (When external clock is input) V 0.06 Vcc = 3 V0.26 High-level input current P10/A8/D8 - P17/A15/D15, VCC = 5 V, VI = 5 V5 P20/A16/D0 - P27/A23/D7, P43 - P47, Iн μΑ P50 - P57, P60 - P67, P70 - P77, P80 - P87, Vcc = 3 V, VI = 3 V4 XIN, RESET, CNVss, BYTE Low-level input current P10/A8/D8 - P17/A15/D15, VCC = 5 V, VI = 0 V-5 P20/A16/D0 - P27/A23/D7, P43 - P47, ١L μΑ P50 - P53, P60, P61, P65 - P67, P70 - P77, -4 VCC = 3 V, VI = 0 VP80 - P87, XIN, RESET, CNVss, BYTE $V_{I} = 0 V$. Vcc = 5 V -5 μΑ without a pull-up Low-level input current P54 - P57, P62 - P64 ΙL Vcc = 3 V-4 transistor $V_{I} = 0 V_{I}$ Vcc = 5 V-0.25 -0.5 -1.0 mΑ with a pull-up Vcc = 3 V -0.08 transistor -0.18 -0.35 When clock is stopped 2 V VRAM RAM hold voltage

ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)

Symbol	Parameter	Test conditions	Test conditions		Limits		Unit
			Min.	Тур.	Max.		
Icc			Vcc = 5 V, f(X N) = 12 MHz (square waveform), $(f(f_2) = 6$ MHz), f(XC N) = 32.768 kHz, in operating (Note 1)		5.4	10.8	mA
			Vcc = 3 V, f(X N) = 12 MHz (square waveform), $(f(f_2) = 6 \text{ MHz}),$ $f(X_{C N}) = 32.768 \text{ kHz},$ in operating (Note 1)		3.6	7.2	mA
	Power source	Power source When external bus is in use, output $(f(f2) = 0.75 \text{ MHz}), f(X \in \mathbb{N}) = \text{Stopped},$	$f(X_{IN}) = 12 \text{ MHz}$ (square waveform), (f(f ₂) = 0.75 MHz),		0.5	1.0	mA
		other pins are Vss.	$ Vcc = 3 V, \\ f(X_{IN}) = 12 \text{ MHz (square waveform)}, \\ f(X_{CIN}) = 32.768 \text{ kHz}, \\ when a WIT instruction is executed (Note 2) $		6	12	μA
			Vcc = 3 V, $f(X_{IN}) = Stopped,$ $f(X_{CIN}) = 32.768 \text{ kHz},$ in operating (Note 3)		40	80	μA
			$\label{eq:Vcc} \begin{array}{l} Vcc = 3 \ V, \\ f(X \mid N) = Stopped, \\ f(X \in N) = 32.768 \ \text{kHz}, \\ \text{when a WIT instruction is executed (Note 4)} \end{array}$		3	6	μA
			Ta = 25 °C, when clock is stopped			1	μA
		Ta = 85 °C, when clock is stopped			20	μA	

ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = -40 to +85 °C, unless otherwise noted)

Notes 1. This applies when the main clock external input selection bit = "1", the main clock division selection bit = "0", and the signal output stop bit = "1".

2. This applies when the main clock external input selection bit = "1" and the system clock stop bit at wait state = "1".

3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock.

4. This applies when the XCOUT drivability selection bit = "0" and the system clock stop bit at wait state = "1".

A-D CONVERTER CHARACTERISTICS

(Vcc = AVcc = 5 V, Vss = AVss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note))

Symbol	Parameter	Test conditions		Unit		
	i arameter		Min.	Тур.	Max.	Unit
—	Resolution	VREF = VCC			10	Bits
—	Absolute accuracy	VREF = VCC			± 3	LSB
RLADDER	Ladder resistance	VREF = VCC	10		25	kΩ
t CONV	Conversion time		19.6			μs
Vref	Reference voltage		2.7		Vcc	V
VIA	Analog input voltage		0		Vref	V

Note. This applies when the main clock division selection bit = "0" and $f(f_2) = 6$ MHz.

TIMING REQUIREMENTS (Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) **Notes 1.** This applies when the main clock division selection bit = "0" and f(f2) = 6 MHz.

2. Input signal's rise/fall time must be 100 ns or less, unless otherwise noted.

External clock input

Symbol	Parameter	Lir	Unit	
		Min.	Max.	
tc	External clock input cycle time (Note 1)	83		ns
tw(H)	External clock input high-level pulse width (Note 2)	33		ns
tw(L)	External clock input low-level pulse width (Note 2)	33		ns
tr	External clock rise time		15	ns
tr	External clock fall time		15	ns

Notes 1. When the main clock division selection bit = "1", the minimum value of tc = 166 ns.

2. When the main clock division selection bit = "1", values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.

Microprocessor mode

Symbol	Parameter	Lir	Unit	
Symbol	Falantelei	Min.	Max.	
tsu(P4D–E)	Port P4 input setup time	200		ns
tsu(P5D–E)	Port P5 input setup time	200		ns
tsu(P6D–E)	Port P6 input setup time	200		ns
tsu(P7D–E)	Port P7 input setup time	200		ns
tsu(P8D–E)	Port P8 input setup time	200		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns
tsu(D–E)	Data input setup time	80		ns
tsu(RDY- ϕ 1)	RDY input setup time	80		ns
tsu(HOLD- ϕ 1)	HOLD input setup time	80		ns
th(E–D)	Data input hold time	0		ns
th(ϕ 1–RDY)	RDY input hold time	0		ns
th(ϕ 1–HOLD)	HOLD input hold time	0		ns

New product

16-BIT CMOS MICROCOMPUTER

M37733S4LHP

Timer A input (Count input in event counter mode)

Symbol	parameter	Lir	Unit	
		Min.	Max.	Unit
tc(TA)	TAin input cycle time	250		ns
tw(TAH)	TAin input high-level pulse width	125		ns
tw(TAL)	TAin input low-level pulse width	125		ns

Timer A input (Gating input in timer mode)

Symbol	parameter	Lir	Unit	
		Min.	Max.	Unit
tc(TA)	TAin input cycle time (Note)	666		ns
tw(TAH)	TAin input high-level pulse width (Note)	333		ns
tw(TAL)	TAin input low-level pulse width (Note)	333		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS."

Timer A input (External trigger input in one-shot pulse mode)

Symbol	parameter	Lir	Unit	
		Min.	Max.	Unit
tc(TA)	TAin input cycle time (Note)	666		ns
tw(TAH)	TAil input high-level pulse width	166		ns
tw(TAL)	TAil input low-level pulse width	166		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS."

Timer A input (External trigger input in pulse width modulation mode)

Symbol	parameter	Lir	Unit	
	parameter	Min.	Max.	Unit
tw(TAH)	TAin input high-level pulse width	166		ns
tw(TAL)	TAil input low-level pulse width	166		ns

Timer A input (Up-down input in event counter mode)

Symbol	parameter	Lir	Unit	
		Min.	Max.	
tc(UP)	TAiout input cycle time	3333		ns
tw(UPH)	TAiout input high-level pulse width	1666		ns
tw(UPL)	TAiout input low-level pulse width	1666		ns
tsu(UP–Tıℕ)	TAiout input setup time	666		ns
th(Tıℕ–UP)	TAiout input hold time	666		ns

Timer A input (Two-phase pulse input in event counter mode)

Symbol	parameter	Lir	Unit	
		Min.	Max.	Unit
tc(TA)	TAjın input cycle time	2000		ns
tsu(TAjın−TAjouт)	TAjın input setup time	500		ns
tsu(TAjout–TAjin)	TAjout input setup time	500		ns

New product

16-BIT CMOS MICROCOMPUTER

M37733S4LHP

Timer B input (Count input in event counter mode)

Symbol	Parameter	Lir	1.1.4.14	
		Min.	Max.	Unit
tc(TB)	TBin input cycle time (one edge count)	250		ns
tw(TBH)	TBin input high-level pulse width (one edge count)	125		ns
tw(TBL)	TBin input low-level pulse width (one edge count)	125		ns
tc(TB)	TBin input cycle time (both edges count)	500		ns
tw(TBH)	TBin input high-level pulse width (both edges count)	250		ns
tw(TBL)	TBin input low-level pulse width (both edges count)	250		ns

Timer B input (Pulse period measurement mode)

Symbol	Parameter	Lir	nits	Unit
Symbol	T draineter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (Note)	666		ns
tw(TBH)	TBin input high-level pulse width (Note)	333		ns
tw(TBL)	TBin input low-level pulse width (Note)	333		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS."

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Lir	nits	Linit
Symbol		Min.	Max.	Unit
tc(TB)	TBin input cycle time (Note)	666		ns
tw(TBH)	TBin input high-level pulse width (Note)	333		ns
tw(TBL)	TBin input low-level pulse width (Note)	333		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS."

A-D trigger input

Symbol	Parameter	Lir	nits	Unit
Cymbol		Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (minimum allowable trigger)	1333		ns
tw(ADL)	ADTRG input low-level pulse width	166		ns

Serial I/O

Symbol	Parameter	Lir	nits	Unit
Gymbol	T arameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	333		ns
tw(CKH)	CLKi input high-level pulse width	166		ns
tw(CKL)	CLKi input low-level pulse width	166		ns
td(C–Q)	TxDi output delay time		100	ns
th(C–Q)	TxDi hold time	0		ns
tsu(D–C)	RxDi input setup time	65		ns
th(C–D)	RxDi input hold time	75		ns

External interrupt INTi input, key input interrupt Kli input

Symbol	Parameter	Lir	nits	Unit
Symbol	Falameter	Min.	Max.	Unit
tw(INH)	INTi input high-level pulse width	250		ns
tw(INL)	INTi input low-level pulse width	250		ns
ťw(KIL)	Kii input low-level pulse width	250		ns

DATA FORMULAS

Timer A input (Gating input in timer mode)

Symbol	Parameter	Limits	Max	Unit
Cymbol		Min.	Max.	Unit
tc(TA)	TAin input cycle time	$\frac{8 \times 10^9}{2 \bullet f(f_2)}$		ns
tw(TAH)	TAiın input high-level pulse width	$\frac{4 \times 10^9}{2 \cdot f(f_2)}$		ns
tw(TAL)	TAiın input low-level pulse width	$\frac{4 \times 10^9}{2 \cdot f(f_2)}$		ns

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Limits		Linit
Symbol	i didineter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	$\frac{8 \times 10^9}{2 \bullet f(f_2)}$		ns

Timer B input (In pulse period measurement mode or pulse width measurement mode)

Symbol	Parameter	Limits		Unit
Cymbol	i diditeter	Min.	Max.	Unit
tc(TB)	TBin input cycle time	$\frac{8 \times 10^9}{2 \cdot f(f_2)}$		ns
tw(TBH)	TBin input high-level pulse width	$\frac{4 \times 10^9}{2 \bullet f(f_2)}$		ns
tw(TBL)	TBin input low-level pulse width	$\frac{4 \times 10^9}{2 \bullet f(f_2)}$		ns

Note. f(f2) expresses the clock f2 frequency.

For the relation to the main clock and sub clock, refer to Table 9 in data sheet "M37733MHBXXXFP".

SWITCHING CHARACTERISTICS

(Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85°C, f(XiN) = 12 MHz, unless otherwise noted (Note))

Microprocessor mode

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol			Min.	Max.	
td(E-P4Q)	Port P4 data output delay time			300	ns
td(E–P5Q)	Port P5 data output delay time			300	ns
td(E-P6Q)	Port P6 data output delay time	Fig. 14		300	ns
td(E–P7Q)	Port P7 data output delay time			300	ns
td(E-P8Q)	Port P8 data output delay time			300	ns

Note. This applies when the main clock division selection bit = "0" and $f(f_2) = 6$ MHz.

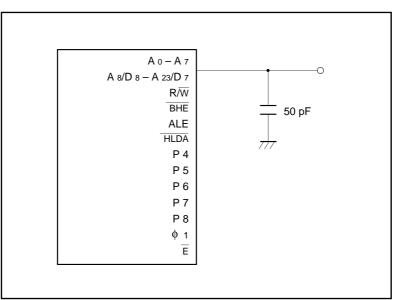


Fig. 14 Measuring circuit for each pin

Microprocessor mode

(Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))

Symbol	Parameter	(Note2)	Test	Lir	nits	Unit
Oymbol	i didificici	Wait mode	conditions	Min.	Max.	Unit
		No wait		20		ns
td(An–E)	Address output delay time	Wait 1				
		Wait 0		182		ns
		No wait		20		ns
td(A–E)	Address output delay time	Wait 1	-			
		Wait 0	-	162		ns
th(E–An)	Address hold time			40		ns
		No wait		40		ns
tw(ALE)	ALE pulse width	Wait 1				115
		Wait 0		123	Max. Max.	ns
		No wait		10		ns
tsu(A–ALE)	Address output setup time	Wait 1				115
		Wait 0		93	Max.	ns
		No wait		9		ns
th(ALE–A)	Address hold time	Wait 1				
		Wait 0	Fig. 14	40		ns
		No wait		4		ns
td(ALE–E)	ALE output delay time	Wait 1				
		Wait 0		40		ns
td(E-DQ)	Data output delay time				90	ns
th(E–DQ)	Data hold time			-		ns
		No wait		131		ns
tw(EL)	Ē pulse width	Wait 1		298		ns
		Wait 0		20 182 20 162		
tpxz(E–DZ)	Floating start delay time				10	ns
tpzx(E–DZ)	Floating release delay time			53		ns
		No wait		20		ns
td(BHE–E)	BHE output delay time	Wait 1				
		Wait 0		182		ns
		No wait		20		ns
td(R/W–E)	R/W output delay time	Wait 1 Wait 0	-			
			-			ns
th(E–BHE)	BHE hold time			33		ns
th(E-R/W)	R/W hold time			33		ns
td(E-	φ 1 output delay time			0	30	ns
td(of 1–HLDA)	HLDA output delay time				120	ns

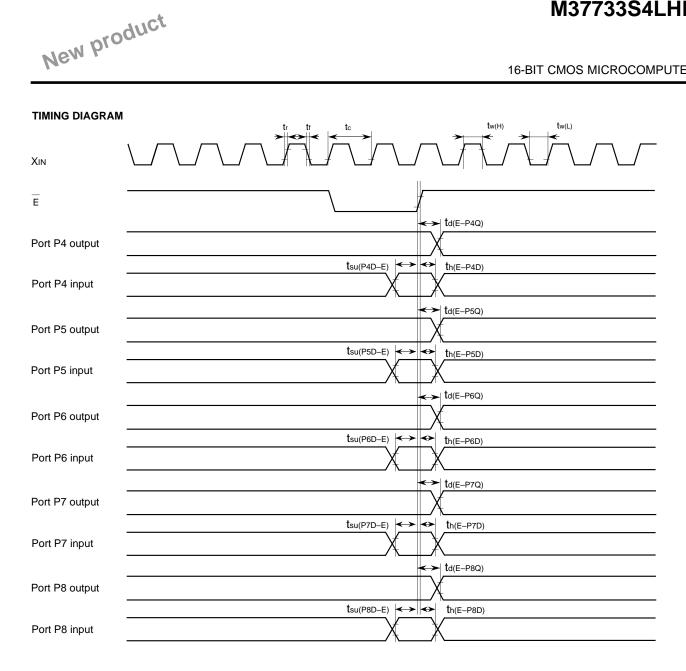
Notes 1. This applies when the main clock division selection bit = "0" and f(f₂) = 6 MHz.

2. No wait : Wait bit = "1".

Wait 1 : The external memory area is accessed with wait bit = "0" and wait selection bit = "1". Wait 0 : The external memory area is accessed with wait bit = "0" and wait selection bit = "0".

Bus timing data formulas

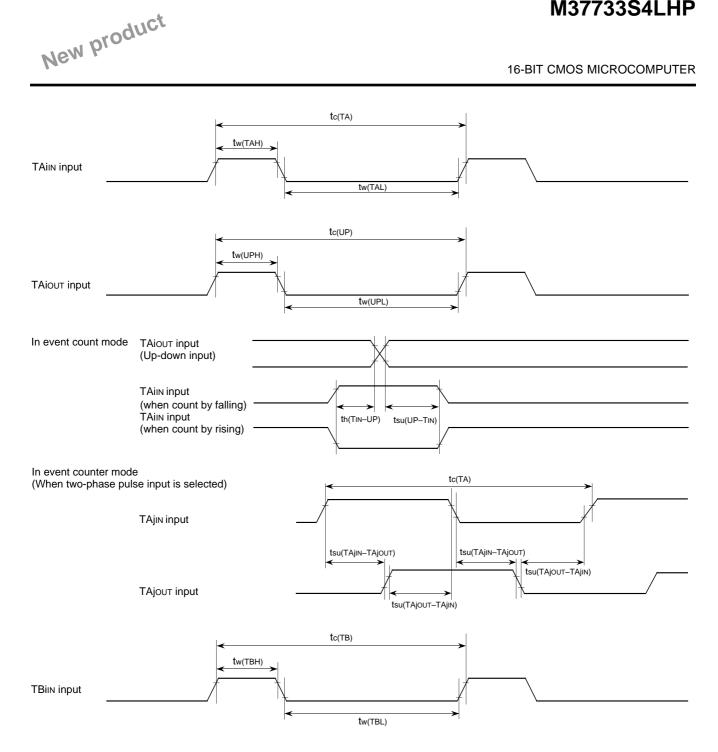
(Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XiN) = 12 MHz (Max.), unless otherwise noted (Note 1))


Symbol	Parameter		Limits		Uni
Cymbol		Wait mode	Min.	Max.	Uni
		No wait	$\frac{1 \times 10^9}{-63}$		ns
ld(An–E)	Address output delay time	Wait 1	2 • f(f2)		
		Wait 0	$\frac{3 \times 10^9}{2 \cdot f(f_2)} - 68$		ns
		No wait	$\frac{1 \times 10^9}{2} - 63$		ns
td(A–E)	Address output delay time	Wait 1	2 • f(f2)		116
(A-E)	Address output delay line	Wait 0	$\frac{3 \times 10^9}{2 \cdot f(f_2)} - 88$		ns
th(E–An)	Address hold time		$\frac{1 \times 10^9}{2 \cdot f(f_2)} - 43$		ns
		No wait	$\frac{1 \times 10^9}{-43}$		
		Wait 1	$-2 \cdot f(f_2) = 43$		ns
tw(ALE)	ALE pulse width	Wait 0	$\frac{2 \times 10^9}{2 \cdot f(f_2)} - 43$		ns
		No wait	$\frac{1 \times 10^9}{2 \circ f(f_0)} - 73$		
		Wait 1			ns
tsu(A–ALE)	Address output setup time	Wait 0	$\frac{2 \times 10^9}{2 \cdot f(f_2)} - 73$		ns
		No wait	9		
t h(ALE–A)	Address held time	Wait 1	9		ns
(INCALE-A)	Address hold time		$\frac{1 \times 10^9}{-100} - 43$		
		Wait 0	$2 \cdot f(f_2) = 43$		ns
		No wait	4		ns
td(ALE–E)	ALE output delay time	Wait 1			110
		Wait 0	$\frac{1 \times 10^9}{2 \cdot f(f_2)} - 43$		ns
td(E–DQ)	Data output delay time			90	ns
th(E–DQ)	Data hold time		$\frac{1 \times 10^9}{2 \cdot f(f_2)} - 43$		ns
4 (-)		No wait	$\frac{2 \times 10^9}{2 \cdot f(f_2)} - 35$		ns
tw(EL)	E pulse width	Wait 1	4 X 10 ⁹ 25		
		Wait 0	$\frac{-4 \times 10}{2 \cdot f(f_2)} - 35$		ns
tpxz(E–DZ)	Floating start delay time	·		10	ns
			$\frac{1 \times 10^9}{2 \cdot f(f_2)} - 30$		-
t pzx(E–DZ)	Floating release delay time		$2 \cdot f(f_2) = 30$		ns
		No wait	$\frac{1 \times 10^9}{2 \cdot f(f_2)} - 63$		
		Wait 1	- '(')		ns
td(BHE–E)	BHE output delay time	Wait 0	$\frac{3 \times 10^9}{2 \cdot f(f_2)} - 68$		ns
+ 1/D AA/ 5		No wait	1 X 10 ⁹ _ 63		ns
td(R/W–E)	R/\overline{W} output delay time	Wait 1	$-2 \cdot f(f_2) = 0.5$		
		Wait 0	$\frac{3 \times 10^9}{2 \cdot f(f_2)} - 68$		ns
th(E–BHE)	BHE hold time		1×10^{9} - 50		ns
			$2 \cdot f(f_2)$ 30 1 X 10 ⁹ = 0		
th(E-R/W)	R/\overline{W} hold time		$\frac{1 \times 10^{\circ}}{2 \cdot f(f_2)} - 50$		n
İd(Ε– φ 1)	ϕ 1 output delay time		0	30	ns

Notes 1. This applies when the main-clock division selection bit = "0".

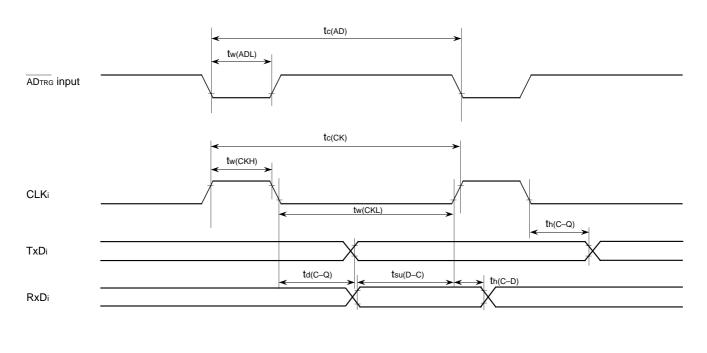
2. f(f2) expresses the clock f2 frequency.

For the relation to the main clock and sub clock, refer to Table 9 in data sheet "M37733MHBXXXFP".



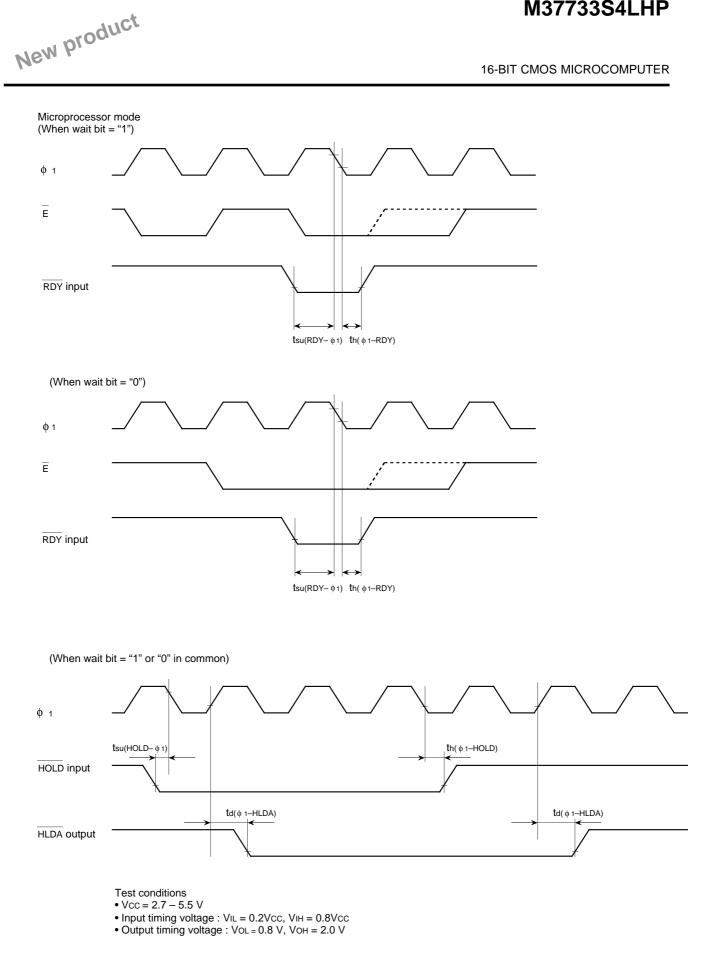
MITSUBISHI MICROCOMPUTERS

M37733S4LHP

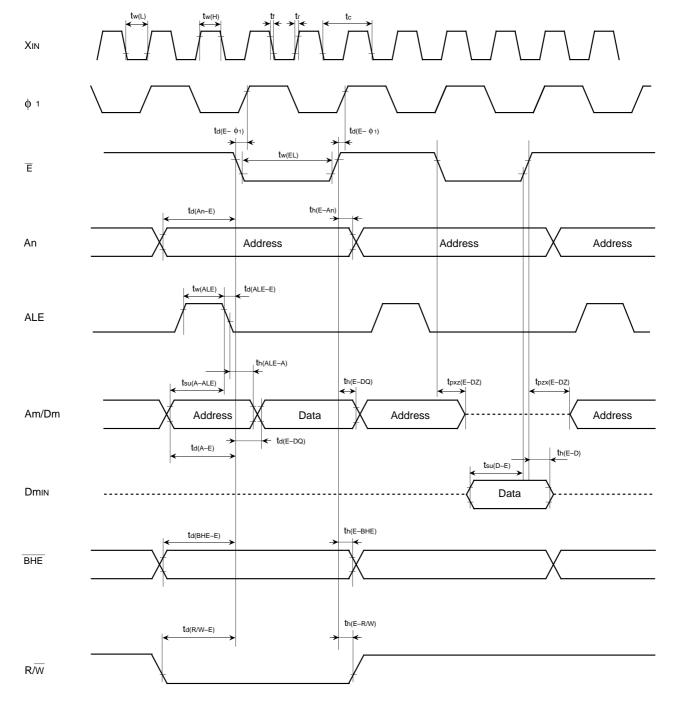


MITSUBISHI MICROCOMPUTERS

M37733S4LHP


16-BIT CMOS MICROCOMPUTER

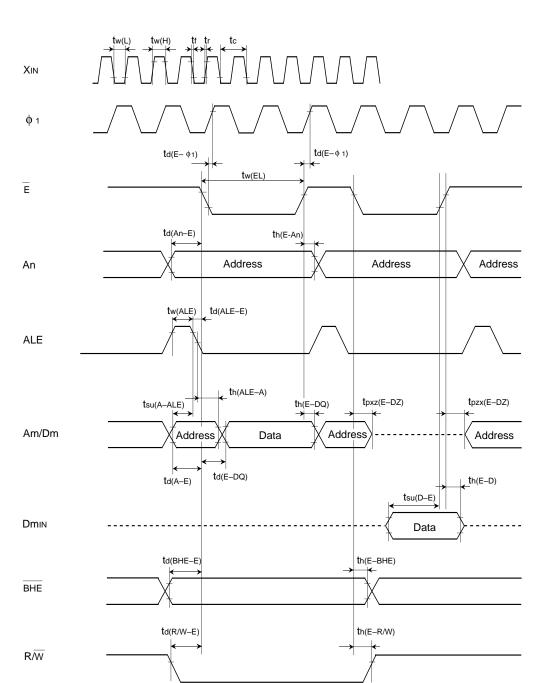
New product



Test conditions • Vcc = 2.7 – 5.5 V

VCC = 2.7 – 5.5 V
 Output timing voltage : VoL = 0.8 V, Voн = 2.0 V

• Data input Dmin : VIL = 0.16Vcc, VIH = 0.5Vcc


Microprocessor mode (No wait : When wait bit = "1")

Microprocessor mode

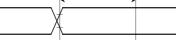
New product

MITSUBISHI MICROCOMPUTERS M37733S4LHP

Microprocessor mode (Wait 1 : The external memory area is accessed when wait bit = "0" and wait selection bit = "1".)

Test conditions • Vcc = 2.7 - 5.5 V

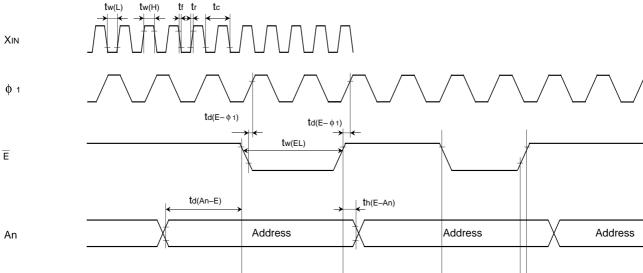
• Output timing voltage : VoL = 0.8 V, VoH = 2.0 V • Data input DmIN : VIL = 0.16Vcc, VIH = 0.5Vcc



- Vcc = 2.7 5.5 V

- Data input DmIN : VIL = 0.16Vcc, VIH = 0.5Vcc
- Output timing voltage : VoL = 0.8 V, VOH = 2.0 V

- Test conditions


td(BHE-E)

td(R/W–E)

Address Address td(ALE-E) tw(ALE ALE th(ALE-A) tsu(A-ALE) tpzx(E–DZ) th(E-DQ) tpxz(E–DZ) Am/Dm Address Address Address Data ← td(E–DQ) td(A-E)

th(E-BHE)

th(E–R/W)

Microprocessor mode (Wait 0 : The external memory area is accessed when wait bit = "0" and wait selection bit = "0".)

New product

16-BIT CMOS MICROCOMPUTER

tsu(D–E)

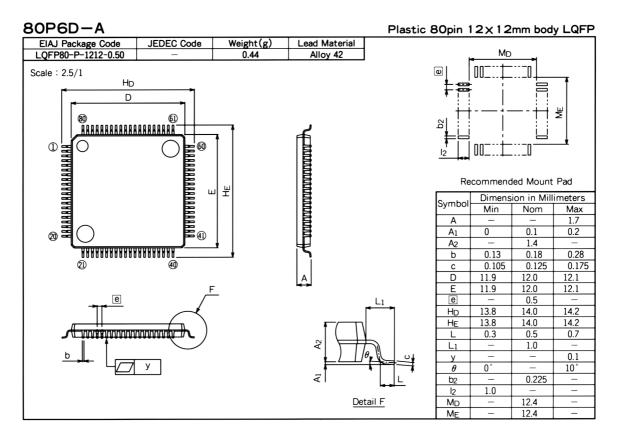
Data

th(E–D)

.

MITSUBISHI MICROCOMPUTERS M37733S4LHP

Dmin


BHE

R/W

PACKAGE OUTLINE

New product

MITSUBISHI MICROCOMPUTERS M37733S4LHP

MEMO

New product

New product

MEMO

MITSUBISHI MICROCOMPUTERS

MITSUBISHI MICROCOMPUTERS M37733S4LHP

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

New product

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples . .

- contained in these materials.
- contained in these materials. All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior writen approval of Mitsubish Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
- In these products on technologies are subject to the expansion expert control restriction restriction is prohibited. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 1996 MITSUBISHI ELECTRIC CORP H-LF434-A KI-9607 Printed in Japan (ROD) I New publication, effective Jul. 1996. Specifications subject to change without notice.

